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Warsaw, Poland

Received 23 September 1997

Abstract. Quantum Lorentz groupsH admitting quantum Minkowski spaceV are selected.
The natural structure of a quantum spaceG = V ×H is introduced, defining a quantum group
structure onG only for triangularH (q = 1). We show that it defines a braided quantum group
structure onG for |q| = 1.

Introduction

Any example of a quantum Poincaré group [1] is constructed using one of the quantum
Lorentz groups introduced in [2]. However, only very special cases of the latter (triangular
deformations) can be used for this purpose. Cases related to the celebratedq-deformation
of Drinfeld and Jimbo are, unfortunately, excluded. This is in fact a general feature of
inhomogeneous quantum groups [3, 4].

It turned out recently that this obstacle can be circumvented, if one allows the deformed
inhomogeneous group to be a braided quantum group rather than an ordinary quantum group.
It means that the comultiplication is a morphism into a non-trivial crossed-product algebra
rather than the usual product. It turns out that on the level of generators, the only non-trivial
cross-relations are those for the translation coordinates. These results have been derived in
our previous paper [5] for the case when the homogeneous part is the standardq-deformed
(with |q| = 1) orthogonal quantum groupSO(p, p), SO(p, p+1) [6] or SO(p, p+2) [7].
The author has recently learned of the paper by Drabant [8] where results of similar type
(without the reality condition) were obtained (see also [9, 10]).

In the present paper we study the case when the homogeneous partH is the Lorentz
group. This case requires separate study, because we have the possibility of taking into
account the complete classification of quantum deformations [2]. Another reason for a
separate treatment is that we want to consider the ‘more fundamental’ simply connected
SL(2,C) group instead ofSO(1, 3).

The paper is organized as follows. In section 1 we recall non-triangular, deformation-
type cases of quantum Lorentz groupH . In section 2 we select those cases which have
the corresponding quantum Minkowski spaceV (this happens for|q| = 1 or q2 ∈ R). In
section 3 we construct a natural crossed ‘Cartesian product’G of V andH (as quantum
spaces). In section 4 we investigate conditions under which the natural formula for the
comultiplication on generators defines a morphism of algebras, the product algebra being
understood with suitable crossed (or braided) structure.

The same program on the Poisson level has already been presented in [5].
We conclude in section 5 with explicit commutation relations for the Minkowski space.

Several proofs are relegated to an appendix.
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1. Quantum Lorentz groups

We recall that the∗-algebraA = Poly(H) of polynomials on quantumH = SL(2,C) is
generated by the matrix elements of

u = (uAB)A,B=1,2 =
(
u1

1 u1
2

u2
1 u2

2

)
subject to the relations

u1u2E = E E′u1u2 = E′ Xu1u2 = u1u2X (1)

whereE, E′ andX are described in [2, theorem 2.2]. Here the subscripts 1 and 2 refer
to the position of a given object in the tensor product of the underlying ‘arithmetic’ vector
space (in this caseC2, with the standard basise1, e2). For instance, the first equality means
thatuACu

B
DE

CD = EAB (summation convention). We omit the subscripts when the object has
only one natural position in a given situation (likeE for instance). The complex conjugate
u of u is given by

u = (uA
B
)A,B=1,2 =

(
(u1

1)
∗ (u1

2)
∗

(u2
1)
∗ (u2

2)
∗

)
i.e. uA

B
= (uAB)∗.

The ‘barred’ indices refer to the complex conjugate basise1 := e1, e2 := e2 in C2.
With the standard comultiplication defined on generators by1u = uu′ (primed

coordinates refer to thesecond copyof H ; in a less compact notation,1uAB = uAC ⊗ uCB ∈
A ⊗ A), the above∗-algebra becomes a Hopf∗-algebra. (For instance,1 preserves the
relations1u11u2E = u1u

′
1u2u

′
2E = u1u2u

′
1u
′
2E = u1u2E = E.)

In what follows we focus on non-triangular deformations. This means that

E = e1⊗ e2− qe2⊗ e1 E′ = e2⊗ e1− q−1e1⊗ e2 q ∈ C \ {0, i,−i} (2)

(the standardq-deformation) andX is given by [2, equations (13) or (15)], i.e. we have
one of the following two cases:

1. X = t 1
2 (e1

1
⊗ e1

1 + e2
2
⊗ e2

2)+ t−
1
2 (e1

2
⊗ e2

1 + e2
1
⊗ e1

2) for 0< t ∈ R
2. X = q 1

2 (e1
1
⊗ e1

1 + e2
2
⊗ e2

2)+ q−
1
2 (e1

2
⊗ e2

1 + e2
1
⊗ e1

2)± q
1
2 e2

1
⊗ e2

1 for 0< q ∈ R

(with the obvious notation for the matrix unitse1
1

:= e1⊗ e1, etc).
Any matrix which intertwinesu1u2 with itself and satisfies the braid equation is

proportional to

M := qP ′ − q−1P or M−1 = q−1P ′ − qP (3)

whereP := −(q+q−1)−1EE′ (the deformed antisymmetrizer) is the projection onE parallel
to kerE′ andP ′ := I −P (the deformed symmetrizer). ConjugatingM±1u1u2 = u1u2M

±1

we obtainK±1u1u2 = u1u2K
±1, where

K := τMτ = qQ′ − q−1Q Q := τPτ Q′ := I −Q. (4)

Throughout the paperτ denotes the permutation in the tensor product.
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2. Quantum Minkowski spaces

In order to discuss quantum Minkowski spaces that are covariant under the quantum Lorentz
group, we consider the four-dimensional representation of the latter:

h := u1u2 i.e. hAB
CD

:= uACuBD. (5)

Note thatτhτ = h. This means that in a basis of elements self-adjoint with respect to
the natural conjugationx 7→ τx in C2 ⊗ C2, such as the basis of Pauli matricesσABj
(j = 0, . . . ,3), the matrixh has self-adjoint elements. In considerations which refer only
to the four-dimensional (‘vector’) representation, it is often convenient to use exactly the
components ofh in the basis of Pauli matrices. These components will be denoted by
h
j

k (j, k = 0, . . . ,3). In the leg-numbering notation (as in equation (1)) we shall use bold
subscripts for the four-dimensional case. For instance, the tensor square ofh will be denoted
either byh12h34 (referring to the spinor representation) or byh1h2 (referring to the vector
representation).

Now we look for appropriate quadratic commutation relations defining the quantum
Minkowski space. Here we use the standard method of dealing with ‘quantum vector
spaces’. The algebra of polynomials on quantum Minkowski space should be generated by
four generatorsx = (xAB)A,B=1,2 = (xj )j=0,...,3 satisfying the reality condition

τx = x (i.e. (xAB)∗ = xBA or (xj )∗ = xj ) (6)

and some quadratic relationsAx1x2 = 0, such that1V x := hx ′ satisfies the same relations
(note, that1V x satisfies the reality automatically). The last requirement will be satisfied if
A is an intertwiner ofh1h2:

A1V x11V x2 = Ah1x1h2x2 = Ah1h2x1x2 = h1h2Ax1x2 = 0 (7)

(this is the key point of the method of [6]). It remains for us to choose an appropriate
intertwiner: it should be a deformation of the antisymmetrizer (see also remark 2.2 below).

FromM±1, K±1, X andX−1 we can build easily four intertwiners ofh1h2 = h12h34,
namely

R̂± := X23(M12K
±1
34 )X

−1
23 (8)

and their inverses. Each of them becomes the permutation in the classical limit.

Proposition 2.1.MatricesR̂± satisfy the braid equation (withC2⊗C2 being the elementary
space).

The proof is given in appendix A.1.
Substituting equations (3), (4) into (8) we obtain the spectral decomposition

R̂± = X23(qq
±1P ′ ⊗Q′ + q−1q∓1P ⊗Q− qq∓1P ′ ⊗Q− q−1q±1P ⊗Q′)X−1

23 . (9)

Since the projectionsP ′ ⊗Q, P ⊗Q′ are three-dimensional,

P (−) := X23(P ′ ⊗Q+ P ⊗Q′)X−1
23 (10)

is a good candidate for the deformed antisymmetrizer. It is in fact easy to see that it becomes
the classical antisymmetrizer in the classical limit.

Remark 2.2.It is not necessary to use the argument of a ‘deformed antisymmetrizer’. In
fact, there is a more straightforward (logical) approach. Note that the subspaceV ∗ spanned
by xj is invariant with respect toH , and we are looking just for a six-dimensional invariant
subspace ofV ∗ ⊗ V ∗. It must be therefore the direct sum of the two three-dimensional
irreducible subrepresentations inV ∗ ⊗ V ∗.
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Definition 2.3.The ∗-algebra generated by(xj )∗ = xj (i.e. (xAB)∗ = xBA) and the relations

P (−)x1x2 = 0 (i.e. P (−)x12x34 = 0) (11)

is said to be the∗-algebra of polynomials on quantum Minkowski space(and denoted by
Poly(V )) if it has the classical size (i.e. if the Poincaré–Birkhoff–Witt theorem holds).

Proposition 2.4.Quantum Minkowski spaces exist only for

|q| = 1 or q2 = q2. (12)

For the proof, see appendix A.2. Note that this result was conjectured in [11].
In what follows we assume one of two possibilities:q = q or |q| = 1 (we discard

q = −q as not of deformation type).
Note that forq = q

R̂+ = X23(q
2P ′ ⊗Q′ + q−2P ⊗Q− P ′ ⊗Q− P ⊗Q′)X−1

23 (13)

R̂− = X23(P ′ ⊗Q′ + P ⊗Q− q2P ′ ⊗Q− q−2P ⊗Q′)X−1
23 (14)

and for |q| = 1

R̂+ = X23(P ′ ⊗Q′ + P ⊗Q− q2P ′ ⊗Q− q−2P ⊗Q′)X−1
23 (15)

R̂− = X23(q
2P ′ ⊗Q′ + q−2P ⊗Q− P ′ ⊗Q− P ⊗Q′)X−1

23 (16)

hence forq = q
relations (11) ⇐⇒ R̂−x1x2 = x1x2

and for |q| = 1

relations (11) ⇐⇒ R̂+x1x2 = x1x2

which ‘explains’ why forq = q or |q| = 1 we obtain the appropriate size of the algebra
generated byx, namely, different ways of ordering the polynomials of the third degree give
the same result, due to the Yang–Baxter property ofR̂± (proposition 2.1):

R12R13R23x1x2x3 = x3x2x1 = R23R13R12x1x2x3 (17)

whereR = τ R̂− for q = q andR = τ R̂+ for |q| = 1.

3. The crossed product of Minkowski with Lorentz

In this section we shall introduce a crossed tensor product of Poly(H) and Poly(V ) in such
a way that the standard comultiplication

1u = uu′ 1x = x + hx ′ (18)

preserves ‘as much as possible’ of the algebraic structure (preserves as many relations as
possible). Technically (see theorem 3.1 below for the precise statement), we consider the
universal∗-algebraB generated byuAB and xj = (xj )∗, satisfying (1), (11) and thecross
relations

x12u3 = T u1x23 (i.e. xABuCD = T ABCEKL
uEDx

KL) (19)

for an appropriate matrixT , which we select after some discussion.
Note that the ‘preservation of relations’ by1 means that1u and1x do satisfy the

same relations asu and x. Let us check when it happens. Of course,1u satisfies (1) as
before. Since

1x121u3 = (x12+ h12x
′
12)u3u

′
3 = T u1x23u

′
1+ h12u3T u

′
1x
′
23
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(here we usex ′12u3 = u3x
′
12) and

T1u11x12 = T u1u
′
1(x23+ h23x

′
23) = T u1x23u

′
1+ T u1h23u

′
1x
′
23,

1x and1u satisfy (19) if

T u1h23 = h12u3T (20)

i.e. T ∈ Mor (u1u2u3, u1u2u3) (T intertwinesu1u2u3 with u1u2u3). It means that

T = X23S12 (21)

for someS ∈ Mor (u1u2, u1u2), which we assume to be invertible.
The discussion of when1 preserves (11) will be postponed to section 4.
By taking the star operation of (19), we obtain

u1x23 = X12(τSτ)23x12u3 (22)

(we have used the propertyτXτ = X); hence

x12u3 = (τS−1
τ)23X

−1
12 u1x23. (23)

It follows that

x12h34 = X23S12(τS
−1
τ)34X

−1
23 h12x34 (24)

and the matrix governing the commutation ofx andh has a similar structure tôR− in (8).
This suggests thatS should be proportional toM orM−1. We shall show that this is indeed
the case, if we requireB to have a correct size.

Recall that acrossed tensor productof two algebras,C andD, is the tensor product of
the vector spacesC ⊗D equipped with the multiplication

m = (mC ⊗mD)(id ⊗ s ⊗ id ) (25)

mC andmD being the multiplication maps inC andD, wheres:D⊗ C → C⊗D is a linear
map satisfying

(id ⊗ s)(mD ⊗ id ) = (id ⊗mD)(s ⊗ id )(id ⊗ s)
(s ⊗ id )(id ⊗mC) = (mC ⊗ id )(id ⊗ s)(s ⊗ id )

(26)

(this condition is equivalent to the associativity ofm). For unital algebras we require
additionally s(I ⊗ c) = c ⊗ I , s(d ⊗ I ) = (I ⊗ d) and for ∗-algebras, we require that
∗12∗12 = id , where

∗12 = s(∗ ⊗ ∗)τ. (27)

Under these conditionsC⊗D becomes a unital∗-algebra (called thecrossed tensor product
of C andD) and the inclusionsc 7→ c ⊗ I , d 7→ I ⊗ d are unital∗-homomorphisms (see,
for instance, [12]).

Theorem 3.1.If there exists a crossed tensor product of∗-algebras Poly(H) and Poly(V ),
compatible with (19), i.e. such that

s(xAB ⊗ uCD) = T ABCEKL
uED ⊗ xKL (28)

then it is unique. It exists if and only if

S = q− 1
2M or S = q 1

2M−1 (29)

(the square roots are defined up to sign).
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The proof is given in appendix A.3.
From now on we shall consider the case whenS = q− 1

2M (the second case in (29) is
completely analogous). We can write equation (24) as

x1h2 = Ŵh1x2 (30)

where

Ŵ = R̂− for q = q Ŵ = q−1R̂− for |q| = 1. (31)

4. The Poincaŕe group with braided translations—only for |q| = 1

Now we can return to the problem of when1 preserves (11), i.e. whenP (−)x1x2 = 0
impliesP (−)1x11x2 = 0. Assuming equation (11) holds, first two terms in

1x11x2 = (x1+ h1x
′
1)(x2+ h2x

′
2) = x1x2+ h1x

′
1h2x

′
2+ x1h2x

′
2+ h1x

′
1x2 (32)

are obviously annihilated byP (−) (second, becauseP (−)h1h2x
′
1x
′
2 = h1h2P

(−)x ′1x
′
2 = 0).

In the last term we shall need to commutex ′1 with x2. Normally they just commute, but it
will be convenient to consider here the following more general situation:

x ′1x2 = B̂x1x
′
2 or x ′2x1 = Bx1x

′
2 (B̂ = τB) (33)

(for some matrixB). In particular, ifB = id , x ′1 and x2 commute. Note that this more
general assumption does not affect previous results on the preservation of (1) and (19).

The sum of the last two terms in (32) is equal to

(Ŵh1x2x
′
1+ h1x

′
1x2)

jk = Ŵ jk

ab h
a
cx

bx ′c + hjl Bklbcxbx ′c = (Ŵ jk

ab δ
l
c + δjaBklbc)hal xbx ′c

hence, finally,1 preserves (11) when

P
(−)
12 (Ŵ12+ B23) = 0. (34)

Now, if B = I , then using equations (31) we see that the above equality is possible only
for q2 = 1.

This is one more manifestation of the fact that the standardq-deformation is not
compatible with inhomogeneous groups.

On the other hand, if we could manage that

P (−)(Ŵ + σI) = 0 for someσ (35)

thenB = σI satisfies (34). In this case1 preserves (11) provided we consider the ‘braiding’

x ′j xk = σxkx ′j . (36)

Taking into account thatP (−) is a projection and a function of̂W , condition (35) means
thatP (−) is a spectral projection of̂W corresponding to a single eigenvalue (equal to−σ ).
From equations (31), (14) and (16) it is clear that this is possible only for|q| = 1 and in
this caseσ = q−1.

It is easy to check that equations (36) consistently define a crossed tensor product of
B with itself. A triple crossed product is also naturally defined (one uses (36) between
each pair) and the coassociativity holds. Concluding, we have a family of braided Poincaré
groups, labelled by two parameters:|q| = 1 andt > 0.

The braided Poincaré group acts on the corresponding quantum Minkowski space in
the braided sense: one has to take into account the non-trivial cross-relations (36) in the
product.
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5. Minkowski space

Here we present the defining relations (11) for the quantum Minkowski space corresponding
to |q| = 1 andt > 0 explicitly:

αβ = tqβα
αγ = t−1qγα

βδ = tqδβ
γ δ = t−1qδγ

βγ = γβ
[α, δ] = t−1(q − q−1)βγ

and

α∗ = α δ∗ = δ β∗ = γ (37)

(cf equations (A14)–(A17) and (A22)). We have denoted the elementsxAB as follows:

x =
(
x11 x12

x21 x22

)
=
(
α β

γ δ

)
. (38)

We may introduce a complex parameterz := q/t 6= 0. The corresponding quantum
Minkowski spaceMz is described by the∗-algebra Poly(Mz) generated by the elements
α, δ, γ satisfying

α∗ = α δ∗ = δ γ ∗γ = γ γ ∗ (39)

such that

αγ = zγ α
γ δ = zδγ
[α, δ] = (z− z)γ ∗γ.

The (Lorentz-invariant)Minkowski length, obtained asE′12(τE
′)34X

−1
23 x12x34, is a central

element of Poly(V ). In terms of the basic generators it equals

αδ

2z
+ δα

2z
− γ ∗γ.
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Appendix

A.1. Braid intertwiners for Minkowski

When we represent equations (8) on a diagram composed of elementary crossingsX, X−1,
M andK±1, then it becomes clear that it is sufficient to prove the ‘elementary moves’

X−1
12M23X12 = X23M12X

−1
23 (A1)

X−1
12X

−1
23K

±1
12 = K±1

23 X
−1
12X

−1
23 (A2)

K±1
12 X23X12 = X23X12K

±1
23 (A3)

M12X
−1
23X

−1
12 = X−1

23X
−1
12M23 (A4)

X12X23M12 = M23X12X23 (A5)

X12K
±
23X

−1
12 = X−1

23K
±1
12 X23. (A6)

The equalities (A1), (A4) and (A5) are mutually equivalent. Also, the equalities (A2), (A3)
and (A6) are mutually equivalent. Note that (A3) with a ‘plus sign’ is obtained by taking the
complex conjugate of (A5). The ‘minus sign’ case is obtained by the complex conjugation
of X12X23M

−1
12 = M−1

23 X12X23, which is of course a simple consequence of (A5) sinceM−1,
is a polynomial ofM.

Thus, it is sufficient to prove (A5). This equality is almost evident from [2] (it expresses
the fact thatX provides a representation of the standardq-commutation relations). Let us
prove this in detail. SinceM is a linear combination ofI andEE′, it is sufficient to show
that

X12X23E12E
′
12 = E23E

′
23X12X23.

From [2, equation (5)] we know thatX12X23E12 = cE23, and, analogously,E′23X12X23 =
dE′12 for some non-zero factorsc, d ∈ C. But d = c, since

(dE′12)E12 = (E′23X12X23)E12 = E′23(X12X23)E12) = E′23(cE23)

and this completes the proof.

A.2. Selection of parameters for Minkowski space

We shall write relations (11) in explicit form. The two cases ofX may be written in one
formula:

X = e1
1
⊗ e1

1 + e2
2
⊗ e2

2 + t−1(e1
2
⊗ e2

1 + e2
1
⊗ e1

2)+ εe2
1
⊗ e2

1

whereε = 0 in case 1 andε = ±1, t = q in case 2 (we have rescaledX for convenience).
We have

X−1 = e1
1 ⊗ e1

1
+ e2

2 ⊗ e2
2
+ t (e2

1 ⊗ e1
2
+ e1

2 ⊗ e2
1
)− εe2

1 ⊗ e2
1
.

Of course, equation (11) is equivalent to

(P ′ ⊗Q)X−1
23 x12x34 = 0 and (P ⊗Q′)X−1

23 x12x34 = 0.

Using

kerP ′ = 〈E〉 = ker〈E〉◦ = ker
〈
e11, e22, e21+ qe12

〉
kerQ = kerτE′ = ker(qe12− e21) kerP = kerE′ = ker(qe21− e12)

kerQ′ = 〈τE〉 = ker
〈
τE
〉◦ = ker

〈
e11, e22, qe21+ e12

〉
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we see that kerP ′ ⊗Q is composed of vectors which are annihilated by the following three
functionals:

{e11, e22, e21+ qe12} ⊗ (qe12− e21)

= {qe1112− e1121, qe2212− e2221, |q|2e1212+ qe2112− qe1221− e2121}
(heree1112 := e11⊗ e12, etc) and kerP ⊗Q′ is composed of vectors which are annihilated
by the following three functionals:

(qe21− e12)⊗ {e11, e22, qe21+ e12}

= {qe2111− e1211, qe2122− e1222, |q|2e2121+ qe2112− qe1221− e1212}.
Composing all the six functionals withX−1

23 , we obtain the following functionals:

{q(e1112− εe1222)− te1211, qte2122− e2221, |q|2te1122+ q(e2112− εe2222)− qe1221− te2211,

q(e2111− εe2221)− te1121, qte2212− e1222, |q|2te2211+ q(e2112− εe2222)

−qe1221− te1122}
and equation (11) is equivalent to the vanishing of these functionals onx12x34. This way
we obtain the following six relations:

q(x11x12− εx12x22)− tx12x11 = 0

qtx21x22− x22x21 = 0

|q|2tx11x22+ q(x21x12− εx22x22)− qx12x21− tx22x11 = 0

q(x21x11− εx22x21)− tx11x21 = 0

qtx22x12− x12x22 = 0

|q|2tx22x11+ q(x21x12− εx22x22)− qx12x21− tx11x22 = 0.

Substituting  x11 x12

x21 x22

 = ( α β

γ δ

)
(A7)

we can write these relations as follows:

q(αβ − εβδ)− tβα = 0 (A8)

qtγ δ − δγ = 0 (A9)

|q|2tαδ + q(γβ − εδδ)− qβγ − tδα = 0 (A10)

q(γ α − εδγ )− tαγ = 0 (A11)

qtδβ − βδ = 0 (A12)

|q|2tδα + q(γβ − εδδ)− qβγ − tαδ = 0. (A13)
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Now we shall show that for the PBW theorem, condition (12) is necessary. We thus consider
case 1, i.e.ε = 0. In this case, the commutation relations take the form

βα = qt−1αβ (A14)

γα = q−1tαγ (A15)

δγ = qtγ δ (A16)

δβ = q−1t−1βδ (A17)

|q|2tδα + qγβ = tαδ + qβγ (A18)

−tδα + qγβ = −|q|2tαδ + qβγ . (A19)

Taking q(A18)− q(A19) and (A18)+ |q|2(A19) instead of (A18) and (A19), we obtain

q(q2+ 1)tδα = q(q2+ 1)tαδ + (q2− q2)βγ (A20)

q(q2+ 1)γβ = t (1− |q|4)αδ + q(q2+ 1)βγ . (A21)

Using equations (A14)–(A17) and (A20), (A21) it is easy to see that each element of the
algebra can be written as a sum of (alphabetically) ordered monomials inα, β, γ, δ. Now,
if we perform the two independent ways of ordering ofq(q2+ 1)γβα, we obtain

q(q2+ 1)γ (βα) = q(q2+ 1)qt−1γαβ = q(q2+ 1)αγβ

= q

q
α[t (1− |q|4)αδ + q(q2+ 1)βγ ]

on the one hand, and

q(q2+ 1)(γβ)α = [t (1− |q|4)αδ + q(q2+ 1)βγ ]α

= 1− |q|4
q(q2+ 1)

α[tq(q2+ 1)αδ + (q2− q2)βγ ] + q
q
t (q2+ 1)βαγ

= (1− |q|4)q
q

q2+ 1

q2+ 1
tααδ + (1− |q|

4)(q2− q2)

q(q2+ 1)
αβγ + q

2

q
(q2+ 1)αβγ

on the other. Comparing the coefficients atααδ we obtain (12). Comparing atαβγ gives
exactly the same. (We assume, of course, thatααδ andαβγ are linearly independent.)

For |q| = 1, relations (A20) and (A21) are equivalent to

γβ = βγ [α, δ] = 1

t
(q − q−1)βγ (A22)

and the algebra Poly(V ) resembles the usualGLq(2) algebra (it is the same, ift = 1). One
can easily check that Poly(V ) is a q-enveloping algebra in the sense of [13], if we order
the generators as follows:

e1 := α e2 := β e3 := γ e4 := δ
hence the PBW theorem holds in this case (see [13, theorem 2.8.1]).

If q = q, relations (A20) and (A21) are equivalent to

δα = αδ [β, γ ] = t (q − q−1)αδ.

Replacingα ↔ β, γ ↔ δ, t ↔ t−1, we obtain the same relations as in the previous case,
hence the PBW theorem holds also in this case. Similarly, it holds forq = −q.
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The case whenε = ±1 andq = t > 0 corresponds to the standard quantum deformation
of the Lorentz group, containing as a subgroupSUq(2) or SUq(1, 1) (depending on the
sign of ε(q − 1)). Relations (A8)–(A13) are then equivalent to those considered by many
authors [14–16]. It can be easily shown that the PBW theorem holds in this case, using the
Diamond lemma [17] (chooseβ < α < δ < γ as the total ordering).

A.3. The algebraB

We setA := Poly(H), C := Poly(V )
The uniqueness ofs is obvious, since its value on any monomial can be reduced by

(26) to the case (19).
Writing equation (19) as

x12u3 = T u1x23

(in case the crossed product exists), we obtain

x12E34 = x12u3u4E34 = T123u1x23u4E14 = T123T234u1u2x34E12 = T123T234E12x34 (A23)

henceT must satisfy

T123T234E12 = E34. (A24)

Taking into account thatX23X12E23 = E12, this means that

S12S23E12 = E23. (A25)

It is easy to see that the only solutions of (A25) which are intertwiners ofu1u2 (hence of
the formaI + bEE′) are (29).

Conversely, we shall show that ifS is given by (29) then there existss: C⊗A→ A⊗C
with the required properties. Let̃A (C̃) be the free∗-algebra generated byuAB (xAB). We
have

A = Ã/JA C = C̃/JC (A26)

whereJA =
〈
J 0
A
〉

is the ideal generated byJ 0
A := {u1u2E−E,E′u1u2−E′, Xu1u2−u1u2X}

in Ã andJC =
〈
J 0
C
〉

is the ideal generated byJ 0
C := {R̂x1x2 − x1x2, (x

AB)∗ = xBA} in C̃.

Here R̂ = R̂− for q = q and R̂ = R̂+ for |q| = 1 (cf the discussion near (17)). It is easy
to see that there exists a (unique) maps̃: C̃ ⊗ Ã → Ã ⊗ C̃ satisfying (19) and (26), with
A, C, s replaced byÃ, C̃, s̃.

The proof will be complete if we show that

s̃(C̃ ⊗ JA) ⊂ JA ⊗ C̃ s̃(JC ⊗ Ã) ⊂ Ã⊗ JC .
Since{a ∈ Ã : s̃(C̃ ⊗ a) ⊂ JA ⊗ C̃} is an ideal inÃ, it is sufficient to show that

s̃(C̃ ⊗ J 0
A) ⊂ JA ⊗ C̃ (A27)

and, similarly,

s̃(J 0
C ⊗ Ã) ⊂ Ã⊗ JC . (A28)

We shall show that

s̃(C̃(1) ⊗ J 0
A) ⊂ JA ⊗ C̃(1) s̃(J 0

C ⊗ Ã(1)) ⊂ Ã(1) ⊗ JC (A29)

whereÃ(1) and C̃(1) denote the linear subspaces spanned by the corresponding generators.
This is sufficient, because then from (26) it follows that

s̃(C̃(n) ⊗ J 0
A) ⊂ JA ⊗ C̃(n) s̃(J 0

C ⊗ Ã(n)) ⊂ Ã(n) ⊗ JC (A30)
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whereÃ(n) and C̃(n) denote the subspaces spanned by monomials of ordern.
To show (A29), note that

x12(u3u4E34− E34) = T123T234u1u2x34E12− x12E34

= T123T234(u1u2E12− E12)x34+ T123T234E12x34− x12E34

= T123T234(u1u2E12− E12)x34

belongs toJ 0
A ⊗ C̃. Similarly, x12(E

′
34u3u4− E′34) ∈ J 0

A ⊗ C̃ and

x12(X34u3u4− u3u4) = X34T123T
′

234u1u2x34− T ′123T234u1u2x34X12 = 0

whereT ′ = (τS
−1
τ)23X

−1
12 is the matrix appearing in (23). The equalityX34T123T

′
234 =

T ′123T234X12 is proved using formulae of the type (A1)–(A6). Furthermore, we have

(R̂1234x12x34− x12x34)u5 = R̂1234x12T345u3x45− x12T345u3x45

= R̂1234T345T123u1x23x45− T345T123u1x23x45

= T345T123u1(R̂2345x23x45− x23x45) ∈ Ã⊗ J 0
C

sinceR̂1234T345T123= T345T123R̂2345 (this also follows from (A1)–(A6)).
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